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1. Introduction and conclusion

A necessary step in describing string theory in terms of a holographic dual gauge theory is

to be able to map all gauge invariant operators of the field theory in string theory, as all

physical information is captured by gauge invariant observables.

Gauge theories can be formulated in terms of a non-abelian vector potential or al-

ternatively in terms of gauge invariant Wilson loop variables. The formulation in terms

of non-abelian connections makes locality manifest while it has the disadvantage that the

vector potential transforms inhomogeneously under gauge transformation and is therefore

not a physical observable. The formulation in terms of Wilson loop variables makes gauge

invariance manifest at the expense of a lack of locality. The Wilson loop variables, being

non-local, appear to be the natural set of variables in which the bulk string theory formu-

lation should be written down to make holography manifest. It is therefore interesting to

consider the string theory realization of Wilson loop operators.1

1This has been done for Wilson loops in the fundamental representation by [1, 2]
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Significant progress has been made in mapping local gauge invariant operators in gauge

theory in the string theory dual. Local operators in the boundary theory correspond to bulk

string fields [3 – 6]. Furthermore, the correlation function of local gauge invariant operators

is obtained by evaluating the string field theory action in the bulk with prescribed sources

at the boundary.

Wilson loop operators are an interesting set of non-local gauge invariant operators in

gauge theory in which the theory can be formulated. Mathematically, a Wilson loop is

the trace in an arbitrary representation R of the gauge group G of the holonomy matrix

associated with parallel transport along a closed curve C in spacetime. Physically, the

expectation value of a Wilson loop operator in some particular representation of the gauge

group measures the phase associated with moving an external charged particle with charge

R around a closed curve C in spacetime.

In this paper we show that all half-BPS operators in four dimensional N = 4 SYM with

gauge group SU(N) – which are labeled by an irreducible representation of SU(N) — can

be realized in the dual gravitational description in terms of D5-branes or alternatively in

terms of D3-branes in AdS5×S5. We show this by explicitly integrating out the physics on

the D5-branes or alternatively on the D3-branes and proving that this inserts a half-BPS

Wilson loop operator in the desired representation in the N = 4 SYM path integral.

The choice of representation of SU(N) can be conveniently summarized in a Young

tableau. We find that the data of the tableau can be precisely encoded in the AdS bulk

description. Consider a Young tableau for a representation of SU(N) with ni boxes in the

i-th row and mj boxes in the j-th column:

Figure 1: A Young tableau. For SU(N), i ≤ N and mj ≤ N while M and ni are arbitrary.

We show that the Wilson operator labeled by this tableau is generated by integrating

out the degrees of freedom on M coincident D5-branes in AdS5×S5 where the j-th D5-brane

has mj units of fundamental string charge dissolved in it. If we label the j-th D5-brane

carrying mj units of charge by D5mj
, the Young tableau in figure 1. has a bulk description

in terms of a configuration of D5-branes given by (D5m1
,D5m2

, . . . ,D5mM
).

We show that the same Wilson loop operator can also be represented in the bulk

description in terms of coincident D3-branes2 in AdS5×S5 where the i-th D3-brane has ni

2The number of D3-branes depends on the length of the first column, which can be at most N
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units of fundamental string charge dissolved in it3. If we label the i-th D3-brane carrying

ni units of charge by D3ni
, the Young tableau in figure 1. has a bulk description in terms

of a configuration of D3-branes4 given by (D3n1
,D3n2

, . . . ,D3nN
).

The way we show that the bulk description of half-BPS Wilson loops is given by D-

branes is by studying the effective field theory dynamics on the N D3-branes that generate

the AdS5×S5 background in the presence of bulk D5 and D3-branes. This effective field

theory describing the coupling of the degrees of freedom on the bulk D-branes to the N = 4

SYM fields is a defect conformal field theory (see e.g. [8 – 10]). It is by integrating out the

degrees of freedom associated with the bulk D-branes in the defect conformal field theory

that we show the correspondence between bulk branes and Wilson loop operators. We can

carry out this procedure exactly and show that this results in the insertion of a half-BPS

Wilson loop operator in the N = 4 SYM theory and that the mapping between the Young

tableau data and the bulk D5 and D3 brane configuration is the one we described above.

We find that the D3-brane description of the Wilson loop is related to the D5-brane

description by bosonizing the localized degrees of freedom of the defect conformal field

theory. The degrees of freedom localized in the codimension three defect, which corresponds

to the location of the Wilson line, are fermions when the bulk brane is a D5-brane. We

find that if we quantize these degrees of freedom as bosons instead, which is allowed in

0 + 1 dimensions, that the defect conformal field theory captures correctly the physics of

the bulk D3-branes.

One of outstanding issues in the gauge/gravity duality is to exhibit the origin of the

loop equation of gauge theory in the gravitational description. This important problem has

thus far remained elusive. Having shown that Wilson loops are more naturally described in

the bulk by D-branes instead of by fundamental strings, it is natural to search for the origin

of the loop equation of gauge theory in the D-brane picture instead of the fundamental

string picture. This is an interesting problem that we hope to turn to in the future.

Having obtained the bulk description of all half-BPS Wilson loop operators in N = 4

SYM in terms of D-branes, it is natural to study the Type IIB supergravity solutions

describing these Wilson loops. Precisely this program has been carried out by Lin, Lunin

and Maldacena [11] for the case half-BPS local operators in N = 4 SYM. In a recent

interesting paper by Yamaguchi [12], a supergravity ansatz was written down that can be

used to search for these solutions. It would be interesting to solve the supergravity BPS

equations for this case.

The description of Wilson loop operators in terms of a defect conformal field theory

seems very economical and might be computationally useful when performing calculations

3This D-brane has been previously considered in the study of Wilson loops by Drukker and Fiol [7]. In

this paper we show that these D-branes describe Wilson loops in a representation of the gauge group which

we determine.
4There can be at most N D3-branes. A D3-brane with AdS2×S2 worldvolume is a domain wall in AdS5

and crossing it reduces the amount of five-form flux by one unit. Having such a D3-brane solution requires

the presence of five-form flux in the background to stabilize it. Therefore, we cannot put more that N such

D3-branes as inside the last one there is no more five-form flux left and the N + 1-th D3-brane cannot be

stabilized.

– 3 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
4

of correlation functions involving Wilson loops. It would also be interesting to consider the

case of a circular Wilson loop5 and study the defect field theory origin of the matrix model

proposed by Erickson, Semenoff and Zarembo [13, 14] for the study of circular Wilson

loops. We expect that the description of Wilson loops studied in this paper can also be

extended to other interesting gauge theories with reduced supersymmetry and different

matter content.

The plan of the rest of the paper is as follows. In section 2 we identify the Wilson loop

operators in N = 4 SYM that preserve half of the supersymmetries and study the N = 4

subalgebra preserved by the half-BPS Wilson loops. Section 3 contains the embeddings of

the D5k and D3k brane in AdS5×S5 and we show that they preserve the same symmetries

as the half-BPS Wilson loop operators. In section 4 we derive the defect conformal field

theory produced by the interaction of the bulk D5k/D3k branes with the D3 branes that

generate the AdS5×S5 background. We also show that a single D5k-brane corresponds to

a half-BPS Wilson loop in the k-th antisymmetric product representation of SU(N) while

the D3k-brane corresponds to the k-th symmetric product representation. In section 5 we

show that a half-BPS Wilson loop in any representation of SU(N) is described in terms of

the collection of D5 or D3 branes explained in the introduction. Some computations have

been relegated to the appendices.

2. Wilson loops in N = 4 SYM

A Wilson loop operator in N = 4 SYM is labeled by a curve C in superspace and by a

representation R of the gauge group G. The data that characterizes a Wilson loop, the

curve C and the representation R, label the properties of the external particle that is used

to probe the theory. The curve C is identified with the worldline of the superparticle

propagating in N = 4 superspace while the representation R corresponds to the charge

carried by the superparticle.

The curve C is parameterized by (xµ(s), yI(s), θα
A(s)) and it encodes the coupling of

the charged external superparticle to the N = 4 SYM multiplet (Aµ, φI , λA
α ), where µ (α)

is a vector(spinor) index of SO(1, 3) while I (A) is a vector (spinor) index of the SO(6)

R-symmetry group of N = 4 SYM. Gauge invariance of the Wilson loop constraints the

curve xµ(s) to be closed while (yI(s), θα
A(s)) are arbitrary curves.

The other piece of data entering into the definition of a Wilson loop operator is the

choice of representation R of the gauge group G. For gauge group SU(N), the irreducible

representations are conveniently summarized by a Young tableau R = (n1, n2, . . . , nN ),

where ni is the number of boxes in the i-th row of the tableau and n1 ≥ n2 ≥ . . . ≥ nN ≥ 0.

The corresponding Young diagram is given by:

1 2 · · · · n1

1 2 · · · n2

1 2 · · · n3

· · · ·
1 2 · n

N

5Which breaks a different set of supersymmetries compared to the loops considered in this paper.
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The main goal of this paper is to identify all half-BPS Wilson loop operators of N = 4

SYM in the dual asymptotically AdS gravitational description.

In this paper we consider bosonic Wilson loop operators for which θα
A(s) = 0. Wilson

loop operators coupling to fermions can be obtained by the action of supersymmetry and

are descendant operators. The operators under study are given by

WR(C) = TrR P exp

(

i

∫

C
ds(Aµẋµ + φI ẏ

I)

)

, (2.1)

where C labels the curve (xµ(s), yI(s)) and P denotes path-ordering along the curve C.

We now consider the Wilson loop operators in N = 4 SYM which are invariant under

one-half of the N = 4 Poincare supersymmetries and also invariant under one-half of

the N = 4 superconformal supersymmetries. The sixteen Poincare supersymmetries are

generated by a ten dimensional Majorana-Weyl spinor ε1 of negative chirality while the

superconformal supersymmetries are generated by a ten dimensional Majorana-Weyl spinor

ε2 of positive chirality. The analysis in appendix A shows that supersymmetry restricts

the curve C to be a straight time-like line spanned by x0 = t and ẏI = nI , where nI is a

unit vector in R6. The unbroken supersymmetries are generated by ε1,2 satisfying

γ0γIn
Iε1 = ε1 γ0γIn

Iε2 = −ε2. (2.2)

Therefore, the half-BPS Wilson loop operators in N = 4 SYM are given by

WR = W(n1,n2,...,nN ) = TrR P exp

(

i

∫

dt (A0 + φ)

)

, (2.3)

where φ = φIn
I . It follows that the half-BPS Wilson loop operators carry only one label;

the choice of representation R.

We conclude this section by exhibiting the supersymmetry algebra preserved by the

insertion of (2.3) to the N = 4 path integral. This becomes useful when identifying the

gravitational dual description of Wilson loops in later sections. In the absence of any

operator insertions, N = 4 SYM is invariant under the PSU(2, 2|4) symmetry group.

It is well known [15] that a straight line breaks the four dimensional conformal group

SU(2, 2) ' SO(2, 4) down to SO(4∗) ' SU(1, 1) × SU(2) ' SL(2, R) × SU(2). Moreover,

the choice of a unit vector nI in (2.3) breaks the SU(4) ' SO(6) R-symmetry of N = 4

SYM down to Sp(4) ' SO(5). The projections (2.2) impose a reality condition on the four

dimensional supersymmetry generators, which now transform in the (4, 4) representation

of SO(4∗) × Sp(4). Therefore, the supersymmetry algebra preserved6.

3. Giant and dual giant Wilson loops

The goal of this section is to put forward plausible candidate D-branes for the bulk de-

scription of the half-BPS Wilson loop operators (2.3). In the following sections we show

6This supergroup has appeared in the past in relation to the baryon vertex by the half-BPS Wilson loops

is Osp(4∗|4)
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that integrating out the physics on these D-branes results in the insertion of a half-BPS

Wilson loop operator to N = 4 SYM. This provides the string theory realization of all

half-BPS Wilson loops in N = 4 SYM.

Given the extended nature of Wilson loop operators in the gauge theory living at the

boundary of AdS, it is natural to search for extended objects in AdS5×S5 preserving the

same symmetries as those preserved by the half-BPS operators (2.3) as candidates for the

dual description of Wilson loops. The extended objects that couple to the Wilson loop

must be such that they span a time-like line in the boundary of AdS, where the Wilson

loop operator (2.3) is defined.

Since we want to identify extended objects with Wilson loops in N = 4 SYM on R1,3,

it is convenient to write the AdS5 metric in Poincare coordinates

ds2
AdS = L2

(

u2ηµνdxµdxν +
du2

u2

)

, (3.1)

where L = (4πgsN)1/4ls is the radius of AdS5 and S5. Furthermore, since the Wilson loop

operator (2.3) preserves an SO(5) symmetry, we make this symmetry manifest by foliating

the metric on S5 by a family of S4’s

ds2
sphere = L2

(
dθ2 + sin2 θ dΩ2

4

)
, (3.2)

where θ measures the latitude angle of the S4 from the north pole and dΩ2
4 is the metric

on the unit S4.

In [1, 2] the bulk description of a Wilson loop in the fundamental representation of the

gauge group associated with a curve C in R1,3 was given in terms of a fundamental string

propagating in the bulk and ending at the boundary of AdS along the curve C. This case

corresponds to the simplest Young tableau R = (1, 0, . . . , 0), with Young diagram .

The expectation value of the corresponding Wilson loop operator is identified with the

action of the string ending at the boundary along C. This identification was motivated

by considering a stack of D3-branes and moving one of them to infinity, leaving behind a

massive external particle carrying charge in the fundamental representation of the gauge

group.

The embedding corresponding to the half-BPS Wilson loop (2.3) for R = (1, 0, . . . , 0)

is given by7

σ0 = x0 σ1 = u xi = 0 xI = nI , (3.3)

so that the fundamental string spans an AdS2 geometry sitting at xi = 0 in AdS5 and

sits at a point on the S5 labeled by a unit vector nI , satisfying n2 = 1. Therefore, the

fundamental string preserves exactly the same SU(1, 1) × SU(2) × SO(5) symmetries as

the one-half BPS Wilson loop operator (2.3). Moreover the string ends on the time-like

line parameretrized by x0 = t, which is the curve corresponding to the half-BPS Wilson

loop (2.3).

7The coordinates σ0, . . . σp refer to the worldvolume coordinates on a string/brane.
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In appendix B we compute the supersymmetries left unbroken by the fundamental

string (3.3). We find that they are generated by two ten dimensional Majorana-Weyl

spinors ε1,2 of opposite chirality satisfying

γ0γIn
Iε1 = ε1 γ0γIn

Iε2 = −ε2, (3.4)

which coincides with the unbroken supersymmetries (2.2) of the half-BPS Wilson loop.

Therefore, the fundamental string preserves the same Osp(4∗|4) symmetry as the half-BPS

Wilson loop (2.3).

The main question in this paper is, what is the holographic description of half-BPS

Wilson loop operators in higher representations of the gauge group?

Intuitively, higher representations correspond to having multiple coincident fundamen-

tal strings8 ending at the boundary of AdS. This description is, however, not very useful as

the Nambu-Goto action only describes a single string. A better description of the system is

achieved by realizing that coincident fundamental strings in the AdS5×S5 background can

polarize [19] into a single D-brane with fundamental strings dissolved in it, thus providing

a concrete description of the coincident fundamental strings.

We now describe the way in which a collection of k fundamental strings puff up into a

D-brane with k units of fundamental string charge on the D-brane worldvolume.

The guide we use to determine which D-branes are the puffed up description of k-

fundamental strings is to consider D-branes in AdS5×S5 which are invariant under the

same symmetries as the half-BPS Wilson loops9, namely we demand invariance under

Osp(4∗|4). The branes preserving the SU(1, 1)×SU(2)×SO(5) symmetries of the Wilson

loop are given by:

1) D5k-brane with AdS2×S4 worldvolume.

2) D3k-brane with AdS2×S2 worldvolume.

We now describe the basic properties of these branes that we need for the analysis in

upcoming sections.

3.1 D5k-brane as a Giant Wilson loop

The classical equations of motion for a D5-brane with an AdS2×S4 geometry and with k

fundamental strings dissolved in it (which we label by D5k) has been studied in the past

in [20, 21]. Here we summarize the necessary elements that will allow us to prove in the

following section that this D-brane corresponds to a half-BPS Wilson loop operator.

The D5k-brane is described by the following embedding

σ0 = x0 σ1 = u σa = ϕa xi = 0 θ = θk = constant, (3.5)

together with a nontrivial electric field F along the AdS2 spanned by (x0, u). Therefore,

a D5k-brane spans an AdS2×S4 geometry10 and sits at a latitude angle θ = θk on the S5,

which depends on k, the fundamental string charge carried by the D5k-brane:

8Such a proposal was put forward in [18] by drawing lessons from the description of Wilson loops in two

dimensonal QCD.
9We have already established that the fundamental strings (3.3) have the same symmetries as the half-

BPS Wilson loops.
10ϕa are the coordinates on the S4 in (3.2).
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Figure 2: A D5k-brane sits at a latitude angle θk determined by the amount of fundamental string

charge it carries.

This brane describes the puffing up of k fundamental strings into a D-brane inside S5,

so in analogy with a similar phenomenon for point-like gravitons [22], such a brane can be

called a giant Wilson loop.

It can be shown [21] that θk is a monotonically increasing function of k in the domain of

θ, that is [0, π] and that θ0 = 0 and θN = π, where N is the amount of flux in the AdS5×S5

background or equivalently the rank of the gauge group in N = 4 SYM. Therefore, we can

dissolve at most N fundamental strings on the D5-brane.

The D5k-brane has the same bosonic symmetries as the half-BPS Wilson loop operator

and it ends on the boundary of AdS5 along the time-like line where the half-BPS Wilson

loop operator (2.3) is defined. In appendix B we show that it also preserves the same

supersymmetries (2.2) as the half-BPS Wilson loop operator (2.3) when nI = (1, 0, . . . , 0)

and is therefore invariant under the Osp(4∗|4) symmetry group.

3.2 D3k-brane as a Dual Giant Wilson loop

The classical equations of motion of a D3-brane with an AdS2×S2 geometry and with k

fundamental strings dissolved in it (which we label by D3k) has been studied recently by

Drukker and Fiol [7]. We refer the reader to this reference for the details of the solution.

For our purposes we note that unlike for the case of the D5k-brane, an arbitrary

amount of fundamental string charge can be dissolved on the D3k-brane. As we shall see

in the next section, this has a pleasing interpretation in N = 4.

The geometry spanned by a D3k-brane gives an AdS2×S2 foliation11 of AdS5, the

location of the slice being determined by k, the amount of fundamental string charge:

11This foliation structure and the relation with N = 4 SYM defined on the AdS2×S2 boundary — which

makes manifest the symmetries left unbroken by the insertion of a straight line Wilson loop — has been

considered in [23, 24, 12]
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Figure 3: A D3k-brane gives an AdS2×S2 slicing of AdS5.

This brane describes the puffing up of k fundamental strings into a D-brane inside

AdS5, so in analogy with a similar phenomenon for point-like gravitons [25, 26], such a

brane can be called a dual giant Wilson loop.

By generalizing the supersymmetry analysis in [7] one can show that the D3k-brane

preserves precisely the same supersymmetries as the fundamental string (3.4) and therefore

the same as the ones preserved by the half-BPS Wilson loop operator.

To summarize, we have seen that k fundamental strings can be described either by a

single D5k-brane or by a single D3k-brane. The three objects preserve the same Osp(4∗|4)
symmetry if the fundamental string and the D3k-brane sit at the north pole of the S5,

i.e. at θ = 0 corresponding to the unit vector nI = (1, 0, . . . , 0). Furthermore, these three

objects are invariant under the same Osp(4∗|4) symmetry as the half-BPS Wilson loop

operator (2.3).

4. Dirichlet Branes as Wilson loops

We show that the half-BPS Wilson loop operators in N = 4 SYM are realized by the D-

branes in the previous section. We study the modification on the low energy effective field

theory on the N D3-branes that generate the AdS5×S5 background due to the presence

of D5-brane giants and D3-brane dual giants. We can integrate out exactly the degrees

of freedom introduced by the Wilson loop D-branes and show that the net effect of these

D-branes is to insert into the N = 4 SU(N) SYM path integral a Wilson loop operator in

the desired representation of the SU(N) gauge group.

In order to develop some intuition for how this procedure works, we start by analyzing

the case of a single D5k-brane and a single D3k-brane. We now show that a D5k-brane de-

scribes a half-BPS Wilson loop operator in the k-th antisymmetric product representation

of SU(N) while a D3k-brane describes one in the k-th symmetric product representation.

In section 5 we proceed to show that a Wilson loop described by an arbitrary Young

tableau corresponds to considering multiple D-branes. We also show that a given Young

– 9 –
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tableau can be either derived from a collection of D5k-branes or from a collection of D3k-

branes and that the two descriptions are related by bosonization.

4.1 D5k-brane as a Wilson Loop

We propose to analyze the physical interpretation of a single D5k-brane in the gauge

theory by studying the effect it has on four dimensional N = 4 SYM. A D5k-brane with

an AdS2×S4 worldvolume in AdS5×S5 arises in the near horizon limit of a single D5-brane

probing the N D3-branes that generate the AdS5×S5 background. The flat space brane

configuration is given by:

0 1 2 3 4 5 6 7 8 9

D3 X X X X

D5 X X X X X X

(4.1)

We can now study the effect of the D5k-brane by analyzing the low energy effective field

theory on a single D5-brane probing N D3-branes in flat space

We note first that the D5-brane produces a codimension three defect on the D3-branes,

since they overlap only in the time direction. In order to derive the decoupled field theory

we must analyze the various open string sectors. The 3-3 strings give rise to the the familiar

four dimensional N = 4 SU(N) SYM theory. The sector of 3-5 and 5-3 strings give rise

to degrees of freedom that are localized in the defect. There are also the 5-5 strings. The

degrees of freedom associated with these strings — a six dimensional vector multiplet on

the D5-brane — are not dynamical. Nevertheless, as we will see, they play a crucial role

in encoding the choice of Young tableau R = (n1, . . . , nN ).

This brane configuration gives rise to a defect conformal field theory (see e.g. [8, 9]),

which describes the coupling of the N = 4 SYM to the localized degrees of freedom. The

localized degrees of freedom arise from the 3-5 and 5-3 strings and they give rise to fermionic

fields χ transforming in the fundamental representation of SU(N). We can write the action

of this defect conformal field theory by realizing that we can obtain it by performing T-

duality on the well studied D0-D8 matrix quantum mechanics (see e.g. [27, 28]). Ignoring

for the moment the coupling of χ to the non-dynamical 5-5 strings, we obtain that the

action of our defect conformal field theory is given by12

S = SN=4 +

∫

dt iχ†∂tχ + χ†(A0 + φ)χ, (4.2)

where A0 is the temporal component of the gauge field in N = 4 SYM and φ is one of the

scalars of N = 4 SYM describing the position of the D3-branes in the direction transverse

to both the D3 and D5 branes; it corresponds to the unit vector nI = (1, 0, . . . , 0).

What are the PSU(2, 2|4) symmetries that are left unbroken by adding to the N = 4

action the localized fields? The supersymmetries of N = 4 SYM act trivially on χ. This

implies that the computation determining the unbroken supersymmetries is exactly the

12We do not write the SU(N) indices explicitly. They are contracted in a straighforward manner between

the χi fields and the A0 ij gauge field, where i, j = 1, . . . , N .
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same as the one we did for the Wilson loop operator (2.3). Likewise for the bosonic

symmetries, where we just need to note that the defect fields live on a time-like straight line.

Therefore, we conclude that our defect conformal field theory has an Osp(4∗|4) symmetry,

just like the half-BPS Wilson loop operator (2.3).

Even though the fields arising from the 5-5 strings are nondynamical, they play a

crucial role in the identification of the D5k-brane with a Wilson loop operator in a particular

representation of the gauge group. As we discussed in the previous section, a D5k-brane has

k fundamental strings ending on it and we must find a way to encode the choice of k in the

low energy effective field theory on the D-branes in flat space. This can be accomplished by

recalling that a fundamental string ending on a D-brane behaves as an electric charge for

the gauge field living on the D-brane. Therefore we must add to (4.2) a term that captures

the fact that there are k units of background electric charge localized on the defect. This is

accomplished by inserting into our defect conformal field theory path integral the operator:

exp

(

−ik

∫

dt Ã0

)

. (4.3)

Equivalently, we must add to the action (4.2) the Chern-Simons term:

−
∫

dt kÃ0. (4.4)

The effect of (4.4) on the Ã0 equation of motion is to insert k units of electric charge at

the location of the defect, just as desired.

We must also consider the coupling of the χ fields to the nondynamical gauge field

Ã on the D5-brane, as they transform in the fundamental representation of the D5-brane

gauge field. Summarizing, we must add to (4.2) :

Sextra =

∫

dt χ†Ã0χ − kÃ0. (4.5)

The addition of these extra couplings preserves the Osp(4∗|4) symmetry of our defect

conformal field theory.

We want to prove that a D5k-brane corresponds to a half-BPS Wilson loop operator

in N = 4 SYM in a very specific representation of SU(N). The way we show this is by

integrating out explicitly the degrees of freedom associated with the D5k-brane. We must

calculate the following path integral

Z =

∫

[Dχ][Dχ†][DÃ0] ei(S+Sextra), (4.6)

where S is given in (4.2) and Sextra in (4.5).

Let’s us ignore the effect of Sextra for the time being; we will take it into account later.

We first integrate out the χ fields. This can be accomplished the easiest by perfoming a
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choice of gauge such that the matrix A0 + φ has constant eigenvalues13:

A0 + φ = diag(w1, . . . , wN ). (4.7)

The equations of motion for the χ fields are then given by:

(i∂t + wi)χi = 0 for i = 1, . . . , N. (4.8)

Therefore, in this gauge, one has a system of N fermions χi with energy wi.

The path integral can now be conveniently evaluated by going to the Hamiltonian

formulation, where integrating out the χ fermions corresponds to evaluating the partition

function of the fermions14. Therefore, we are left with

Z∗ = eiSN=4 ·
N∏

i=1

(1 + xi), (4.9)

where xi = eiβwi and the ∗ in (4.9) is to remind us that we have not yet taken into account

the effect of Sextra in (4.6). A first glimpse of the connection between a D5k-brane and

a half-BPS Wilson loop operator is to recognize that the quantity xi = eiβwi appearing

in (4.9) with wi given in (4.7), is an eigenvalue of the holonomy matrix appearing in the

Wilson loop operator (2.3), that is exp iβ (A0 + φ).

Since our original path integral (4.6) is invariant under SU(N) conjugations, it means

that Z∗ should have an expansion in terms of characters or invariant traces of SU(N),

which are labeled by a Young tableau R = (n1, n2, . . . , nN ). In order to exhibit which

representations R appear in the partition function, we split the computation of the partition

function into sectors with a fixed number of fermions in a state. This decomposition allows

us to write
N∏

i=1

(1 + xi) =

N∑

l=0

El(x1, . . . , xl), (4.10)

where El(x1, . . . , xl) is the symmetric polynomial:

El(x1, . . . , xl) =
∑

i1<i2...<il

xi1 . . . xil . (4.11)

Physically, El(x1, . . . , xl) is the partition function over the Fock space of N fermions, each

with energy wi, that have l fermions in a state.

We now recognize that the polynomial El is the formula (see e.g. [29]) for the trace of

the half-BPS Wilson loop holonomy matrix in the l-th antisymmetric representation

El = Tr(1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

P exp

(

i

∫

dt (A0 + φ)

)

= W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0) , (4.12)

13Here there is a subtlety. This gauge choice introduces a Fadeev-Popov determinant which changes the

measure of the path-integral over the N = 4 SYM fields. Nevertheless, after we integrate out the degrees

of freedom associated with the D5-brane, we can write the result in a gauge invariant form, so that the

Fadeev-Popov determinant can be reabsorbed to yield the usual measure over the N = 4 SYM fields in the

path integral.
14Here we introduce, for convenience an infrared regulator, so that t is compact 0 ≤ t ≤ β.
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where W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

is the half-BPS Wilson loop operator (2.3) corresponding to

the following Young diagram:
1
2
·
·
·
l

Therefore, integrating out the χ fields has the effect of inserting into the N = 4 path

integral a sum over all half-BPS Wilson loops in the l-th antisymmetric representation:

Z∗ = eiSN=4 ·
N∑

l=0

W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0) . (4.13)

It is now easy to go back and consider the effect of Sextra (4.5) on the path integral (4.6).

Integrating over Ã0 in (4.6) imposes the following constraint:

N∑

i=1

χ†
iχi = k. (4.14)

This constraint restrict the sum over states in the partition function to states with precisely

k fermionic excitations. These states are of the form:

χ†
i1

. . . χ†
ik
|0〉. (4.15)

This picks out the term with l = k in (4.13) .

Therefore, we have shown that a single D5k-brane inserts a half-BPS operator in the

k-th antisymmetric representation in the N = 4 path integral

D5k ←→ Z = eiSN=4 · W (1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0) , (4.16)

where SN=4 is the action of N = 4 SYM. The expectation value of this operator can be

computed by evaluating the classical action of the D5k-brane.

4.2 D3k-brane as a Wilson Loop

We now consider what a D3k dual giant brane corresponds to in four dimensional N = 4

SYM. Here we run into a puzzle. Unlike for the case of a D5k-brane, where we could study

the physics produced by the brane by identifying a brane configuration in flat space that

gives rise to a D5k-brane in AdS5×S5 in the near horizon/decoupling limit, there is no

brane configuration in flat space that gives rise in the near horizon/decoupling limit to a

D3k-brane in AdS5×S5.

Despite this shortcoming we make a very simple proposal for how to study the effect

produced by a D3k-brane on N = 4 SYM and show that it leads to a consistent physical

picture. The basic observation is that if we quantize the χ fields appearing in (4.2) (4.5) not
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as fermions but as bosons, which is something that is consistent when quantizing degrees

of freedom in 0 + 1 dimensions, we can show that the effect of the D3k-brane is to insert

a half-BPS Wilson loop operator (2.3) in the k-th symmetric representation of SU(N).

This result is in concordance with the basic physics of the probe branes. In the previous

section we found that the amount of fundamental string charge k on a D5k-brane can be at

most N . On the other hand, we have shown that a D5k-brane corresponds to a Wilson loop

in the k-th antisymmetric representation of SU(N) so that indeed k ≤ N , otherwise the

operator vanishes. For the D3k-brane, however, the string charge k can be made arbitrarily

large. The proposal that the D3k-brane can be studied in the gauge theory by quantizing

χ as bosons leads, as we will show, to a Wilson loop in the k-th symmetric representation,

for which there is a non-trivial representation of SU(N) for all k and fits nicely with the

D3k-brane probe expectations.

Formally, going from the D5k giant to the D3k dual giant Wilson line picture amounts

to performing a bosonization of the defect field χ . It would be very interesting to under-

stand from a more microscopic perspective the origin of this bosonization15.

Having motivated treating χ as a boson we can now go ahead and integrate out the χ

fields in (4.6). As before, we ignore for the time being the effect of Sextra in (4.6). We also

diagonalize the matrix A0 + φ as in (4.7).

The equations of motion are now those for N chiral bosons χi with energy wi

(i∂t + wi)χi = 0 for i = 1, . . . , N, (4.17)

where wi are the eigenvalues of the matrix A0 + φ.

The path integral over χ in (4.6) is computed by evaluating the partition function of

the chiral bosons, which yield

Z∗ = eiSN=4 ·
N∏

i=1

1

1 − xi
, (4.18)

where xi = eiβwi and the ∗ in (4.9) is to remind us that we have not yet taken into account

the effect of Sextra in (4.6). xi are the eigenvalues of the holonomy matrix appearing in

the Wilson loop operator (2.3).

In order to connect this computation with Wilson loops in N = 4 SYM it is convenient

to decompose the Fock space of the chiral bosons in terms of subspaces with a fixed number

of bosons in a state. This decomposition yields

N∏

i=1

1

1 − xi
=

∞∑

l=0

Hl(x1, . . . , xl), (4.19)

where Hl(x1, . . . , xl) is the symmetric polynomial:

Hl(x1, . . . , xl) =
∑

i1≤i2...≤il

xi1 . . . xil . (4.20)

15A similar type of bosonization seems to be at play in the description of half-BPS local operators in

N = 4 SYM in terms of giants and dual giant gravitons [30].

– 14 –



J
H
E
P
0
8
(
2
0
0
6
)
0
7
4

Physically, Hl(x1, . . . , xl) is the partition function over the Fock space of N chiral bosons

with energy wi that have l bosons in a state.

We now recognize that the polynomial Hl is the formula (see e.g. [29]) for the trace of

the half-BPS Wilson loop holonomy matrix in the l-th symmetric representation

Hl = Tr(l,0,...,0) P exp

(

i

∫

dt (A0 + φ)

)

= W(l,0,...,0), (4.21)

where W(l,0,...,0) is the half-BPS Wilson loop operator (2.3) corresponding to the following

Young diagram:
1 2 · · · · l

Therefore, integrating out the χ fields has the effect of inserting into the N = 4 path

integral a sum over all half-BPS Wilson loops in the l-th symmetric representation:

Z∗ = eiSN=4 ·
N∑

l=0

W(l,0,...,0). (4.22)

It is now straightforward to take into account the effect of Sextra (4.5) in (4.6). In-

tegrating over Ã0 imposes the constraint (4.14). This constraint picks out states with

precisely k bosons (4.15) and therefore selects the term with l = k in (4.19).

Therefore, we have shown that a single D3k-brane inserts a half-BPS operator in the

k-th symmetric representation in the N = 4 path integral

D3k ←→ Z = eiSN=4 · W(k,0,...,0), (4.23)

where SN=4 is the action of N = 4 SYM. The expectation value of this operator can be

computed by evaluating the classical action of the D3k-brane.

5. D-brane description of an Arbitrary Wilson loop

In the previous section we have shown that Wilson loops labeled by Young tableaus with

a single column are described by a D5-brane while a D3-brane gives rise to tableaus

with a single row. What is the gravitational description of Wilson loops in an arbitrary

representation?

We now show that given a Wilson loop operator described by an arbitrary Young

tableau, that it can be described either in terms of a collection of giants or alternatively in

terms of a collection of dual giants.

5.1 Wilson loops as D5-branes

In the previous section, we showed that the information about the number of boxes in the

Young tableau with one column is determined by the amount of fundamental string charge

ending on the D5-brane. For the case of a single D5k-brane, this background electric charge

is captured by inserting (4.3)

exp

(

−ik

∫

dt Ã0

)

(5.1)
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in the path integral of the defect conformal field theory. Equivalently, we can add the

Chern-Simons term:

−
∫

dt kÃ0 (5.2)

to the action (4.2). This injects into the theory a localized external particle of charge k

with respect to the U(1) gauge field Ã0 on the D5-brane.

We now show that describing half-BPS Wilson loop operators (2.3) labeled by tableaus

with more that one column corresponds to considering the brane configuration in (4.1) with

multiple D5-branes.

In order to show this, we must consider the low energy effective field theory on M

D5-branes probing N D3-branes. In this case, the U(1) symmetry associated with the

D5-brane gets now promoted to a U(M) symmetry, where M is the number of D5-branes.

Therefore, the defect conformal field theory living on this brane configuration is given by16

S = SN=4 +

∫

dt iχI†
i ∂tχ

I
i + χI†

i (A0 ij + φij)χ
I
j , (5.3)

where i, j is a fundamental index of SU(N) while I, J is a fundamental index of U(M).

We need to understand how to realize in our defect conformal field theory that we

have M D5-branes in AdS5×S5 with a configuration of fundamental strings dissolved in

them. Physically, the string endpoints introduce into the system a background charge

for the U(M) gauge field which depends on the distribution of string charge among the

M D5-branes. The charge is labeled by a representation ρ = (k1, . . . , kM ) of U(M),

where now ρ = (k1, . . . , kM ) is a Young tableau of U(M). A charge in the representation

ρ = (k1, . . . , kM ) is produced when ki fundamental strings end on the i-th D5-brane. This

D5-brane configuration can be labeled by the array (D5k1
, . . . ,D5kM

):

Figure 4: Array of strings producing a background charge given by the representation ρ =

(k1, . . . , kM ) of U(M). The D5-branes are drawn separated for illustration purposes only, as they

sit on top of each other.

16For clarity, we write explicitly the indices associated with SU(N) and U(M).
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We must now add to the defect conformal field theory a term that captures that there

is a static background charge ρ = (k1, . . . , kM ) induced in the system by the fundamental

strings. This is accomplished by inserting into the path integral a Wilson loop operator

for the gauge field Ã0. The operator insertion is given by

Tr(k1,k2,...,kM) P exp

(

−i

∫

dt Ã0

)

, (5.4)

which generalizes (5.1) when there are multiple D5-branes. We must also take into account

the coupling of the localized fermions χI
i to Ã0:

Sextra =

∫

dt χI†
i Ã0IJχJ

i . (5.5)

In order to study what the (D5k1
, . . . ,D5kM

) array in AdS5×S5 corresponds to in

N = 4 SYM, we need to calculate the following path integral

Z =

∫

[Dχ][Dχ†][DÃ0] ei(S+Sextra) · Tr(k1,k2,...,kM ) P exp

(

−i

∫

dt Ã0

)

, (5.6)

where S is given in (5.3) and Sextra in (5.5).

We proceed by gauge fixing the SU(N) ×U(M) symmetry of the theory by diagonal-

izing A0 + φ and Ã0 to have constant eigenvalues respectively. The eigenvalues are given

by:

A0 + φ = diag(w1, . . . , wN )

Ã0 = diag(Ω1, . . . ,ΩM ). (5.7)

Since the path integral in (5.6) involves integration over Ã0 care must be taken in doing

the gauge fixing procedure17. As shown in appendix C, the measure over the Hermitean

matrix Ã0 combines with the Fadeev-Popov determinant ∆FP associated with the gauge

choice

Ã0 = diag(Ω1, . . . ,ΩM ) (5.8)

to yield the measure over a unitary matrix U . That is

[DÃ0] · ∆FP = [DU ], (5.9)

with U = eiβÃ0 and

[DU ] =

M∏

I=1

dΩI ∆(Ω)∆̄(Ω), (5.10)

where ∆(Ω) is the Vandermonde determinant:18

∆(Ω) =
∏

I<J

(eiβΩI − eiβΩJ ). (5.11)

17As discussed in footnote 11, the gauge fixing associated with the SU(N) symmetry can be undone once

one is done integrating out over χ and Ã0.
18There is a residual U(1)N gauge symmetry left over after the gauge fixing (5.8) which turns ΩI into

angular coordinates. We are then left with the proper integration domain over the angles of a unitary

matrix.
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In this gauge, another simplification occurs. The part of the action in (5.6) depending

on the χ fields is given by: ∫

dt χI†
i (∂t + wi + ΩI)χ

I
i . (5.12)

Correspondingly, the equations of motion are:

(i∂t + wi + ΩI)χ
I
i = 0 for i = 1, . . . , N I = 1, . . . ,M. (5.13)

Therefore, we have a system of N · M fermions χI
i with energy wi + ΩI .

We can explicitly integrate out the χ fields in Z (5.6) by going to the Hamiltonian

formulation, just as before. The fermion partition function is:

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ), (5.14)

where as before xi = eiβwi is an eigenvalue of the holonomy matrix appearing in the Wilson

loop operator (2.3) and eiβΩJ is an eigenvalue of the unitary matrix U .

Combining this with the computation of the measure, the path integral (5.6) can be

written as

Z = eiSN=4 ·
∫

[DU ] χ(k1,...,kM )(U
∗)

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ), (5.15)

where we have identified the operator insertion (5.4) with a character in the ρ = (k1, . . . , kM )

representation of U(M):

χ(k1,...,kM )(U
∗) ≡ Tr(k1,...,kM )e

−iβÃ0 . (5.16)

The partition function of the fermions (5.14) can be expanded either in terms of char-

acters of SU(N) or U(M) by using a generalization of the formula we used in (4.10). We

find it convenient to write it in terms of characters of U(M)

M∏

J=1

(1 + xie
iΩJ ) =

M∑

l=0

xl
i χ (1, . . . , 1

︸ ︷︷ ︸
, 0, . . . , 0)

(U) =

M∑

l=0

xl
iEl(U1, . . . , UM ), (5.17)

where

El(U) = Tr(1, . . . , 1
︸ ︷︷ ︸

, 0, . . . , 0)

l

eiβÃ0 (5.18)

is the character of U(M) in the l-th antisymmetric product representation. We recall that

U = eiβÃ0 and that UI = eiβΩI for I = 1, . . . ,M are its eigenvalues.

We now use the following mathematical identity

N∏

i=1

M∑

l=0

xl
iEl(U) =

∑

M≥n1≥n2≥...≥nN

det(Enj+i−j(U)) χ(n1,...,nN )(x), (5.19)
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where

χ(n1,...,nN )(x) = W(n1,...,nN ) (5.20)

is precisely the half-BPS Wilson loop operator (2.3) in the R = (n1, . . . , nN ) representation

of SU(N). Therefore, the fermion partition function (5.14) can be written in terms of

SU(N) and U(M) characters as follows

N∏

i=1

M∏

J=1

(1 + xie
iβΩJ ) =

∑

M≥n1≥n2≥...≥nN

det(Enj+i−j(U))W(n1,...,nN ). (5.21)

The determinant det(Enj+i−j(U)) can be explicitly evaluated by using Giambelli’s

formula (see e.g. [29])

det(Enj+i−j(U)) = χ(m1,m2,...,mM )(U), (5.22)

where χ(m1,m2,...,mM )(U) is the character of U(M) associated with the Young tableau

(m1,m2, . . . ,mM ). This tableau is obtained from (n1, n2, . . . , nN ) by conjugation, which

corresponds to transposing the tableau (n1, n2, . . . , nN ):

Figure 5: A Young tableau and its conjugate. In the conjugate tableau the number of boxes in

the i-th row is the number of boxes in the i-th column of the original one.

The number of rows in the conjugated tableau (m1,m2, . . . ,mM ) is constrained to be

at most M due to the M ≥ n1 ≥ n2 ≥ . . . ≥ nN constraint in the sum (5.21).

These computations allow us to write (5.15) in the following way:

Z = eiSN=4 ·
∑

M≥n1≥n2≥...≥nN

W(n1,...,nN ) ·
∫

[DU ] χ(m1,m2,...,mM )(U)χ(k1,...,kM )(U
∗). (5.23)

Now using orthogonality of U(M) characters:

∫

[DU ] χ(m1,m2,...,mM )(U)χ(k1,...,kM)(U
∗) =

M∏

I=1

δmI ,kI
, (5.24)

we arrive at the final result

Z = eiSN=4 · W(l1,...,lN ), (5.25)

where (l1, . . . , lN ) is the tableau conjugate to (k1, . . . , kM ).

To summarize, we have shown that a collection of D5-branes described by the array

(D5k1
, . . . ,D5kM

) in AdS5×S5 corresponds to the half-BPS Wilson loop operator (2.3) in

N = 4 SYM in the representation R = (l1, . . . , lN ) of SU(N)

(D5k1
, . . . ,D5kM

) ←→ Z = eiSN=4 · W(l1,...,lN ), (5.26)
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where (l1, . . . , lN ) is the tableau conjugate to (k1, . . . , kM ). Thererefore, any half-BPS

Wilson loop operator in N = 4 has a bulk realization. We now move on to show that there

is an alternative bulk formulation of Wilson loop operators in N = 4, now in terms of an

array of D3-branes.

5.2 Wilson loops as D3-branes

Let’s now consider the N = 4 gauge theory description of a configuration of multiple D3-

branes in AdS5×S5. As we have argued in section 4, the only modification in the defect

conformal field theory compared to the case with the D5-branes is to quantize the χI
i fields

as chiral bosons as opposed to fermions. Therefore, we consider the defect conformal field

theory action (5.3) treating χI
i now as bosons.

Similarly to the case with multiple D5-branes, we realize the charge induced by the

fundamental strings ending on the D3-branes by the Wilson loop operator (5.4) in the

representation ρ = (k1, . . . , kM ) of U(M), where ρ = (k1, . . . , kM ) is a Young tableau of

U(M). A charge in the representation ρ = (k1, . . . , kM ) is produced when ki fundamental

strings end on the i-th D3-brane. This D3-brane configuration can be labeled by the array

(D3k1
, . . . ,D3kM

): Therefore, in order to integrate out the degrees of freedom on the

Figure 6: Array of strings producing a background charge given by the representation ρ =

(k1, . . . , kM ) of U(M). The D3-branes are drawn separated for illustration purposes only, as they

sit on top of each other.

probe D3-branes we must calculate the path integral (5.6) treating χI
i as bosons.

We gauge fix the SU(N) × U(M) as before. This gives us that χI
i are chiral bosons

with energy wi + ΩI . Their partition function is then given by

N∏

i=1

M∏

J=1

(
1

1 − xieiβΩJ

)

, (5.27)

where as before xi = eiβwi is an eigenvalue of the holonomy matrix appearing in the Wilson

loop operator.
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Taking into account the measure change computed earlier, we have that

Z = eiSN=4 ·
∫

[DU ] χ(k1,...,kM )(U
∗)

N∏

i=1

M∏

J=1

(
1

1 − xieiβΩJ

)

, (5.28)

where we have identified the operator insertion (5.4) with a character in the ρ = (k1, . . . , kM )

representation of U(M):

χ(k1,...,kM )(U
∗) ≡ Tr(k1,...,kM )e

−iβÃ0 . (5.29)

Now we use that the partition function of the bosons can be expanded in terms of

characters of U(M) by generalizing formula (4.19)

M∏

J=1

(
1

1 − xieiβΩJ

)

=

∞∑

l=0

xl
i χ (l, 0 . . . , 0)

(U) =
∞∑

l=0

xl
iHl(U1, . . . , UM ), (5.30)

where

Hl(U) = Tr(l, 0 . . . , 0) eiβÃ0 (5.31)

is the character of U(M) in the l-th symmetric product representation.

Using an identity from [31]

N∏

i=1

∞∑

l=0

xl
iHl(U) =

∑

n1≥n2≥...≥nN

det(Hnj+i−j(U)) χ(n1,...,nN )(x), (5.32)

where

χ(n1,...,nN )(x) = W(n1,...,nN ) (5.33)

is the half-BPS Wilson loop operator corresponding to the Young tableau R = (n1, . . . , nN )

of SU(N).

The Jacobi-Trudy identity (see e.g. [29]) implies that

det(Hnj+i−j(U)) = χ(n1,n2,...,nN )(U), (5.34)

where χ(n1,n2,...,nN )(U) is the character of U(M) associated with the Young tableau (n1, n2,

. . . , nN ). Considering the antisymmetry of the elements in the same column, we get the

constraint that nM+1 = . . . = nN = 0, otherwise the character vanishes.

These computations allow us to write (5.28) as:

Z = eiSN=4 ·
∑

n1≥n2≥...≥nN

W(n1,...,nN ) ·
∫

[DU ] χ(n1,...,nN )(U) χ(k1,...,kM )(U
∗). (5.35)

Using
∫

[DU ] χ(n1,...,nN )(U) χ(k1,...,kM)(U
∗) =

M∏

I=1

δnI ,kI

N∏

i=M+1

δni,0, (5.36)
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we get that:

Z = eiSN=4 · W(k1,...,kM ,...,0). (5.37)

We have shown that a collection of D3-branes described by the array (D3k1
, . . . ,D3kM

)

in AdS5×S5 corresponds to the half-BPS Wilson loop operator (2.3) in N = 4 SYM in the

representation R = (k1, . . . , kN ) of SU(N)

(D3k1
, . . . ,D3kM

) ←→ Z = eiSN=4 · W(k1,...,kM ,0,...,0). (5.38)

Therefore, any half-BPS Wilson loop operator in N = 4 has a bulk realization in terms of

D3-branes.

To summarize, we have shown that a half-BPS Wilson loop described by an arbitrary

Young tableau can be described in terms of a collection of D5-branes or D3-branes. We

have shown that indeed the relation between a Wilson loop in an arbitrary representation

and a D-brane configuration is precisely the one described in the introduction.
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Note added. While this paper was getting ready for publication, the preprint [32] ap-

peared, which has overlap with parts of section 3. In [33] an analogous D5-brane solution

was considered for the AdS black hole background.

A. Supersymmetry of Wilson loops in N = 4 SYM

In this appendix we study the constraints imposed by unbroken supersymmetry on the

Wilson loop operators (2.1) of N = 4 SYM. Previous studies of supersymmetry of Wilson

loops in N = 4 SYM include [34 – 36].

We want to impose that the Wilson loop operator (2.1) is invariant under one-half of

the N = 4 Poincare supersymmetries and also invariant under one-half of the conformal

supersymmetries. The Poincare supersymmetry transformations are given by

δε1Aµ = iε̄1γµλ

δε1φI = iε̄1γIλ, (A.1)
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while the superconformal supersymmetry transformations are given

δε2Aµ = iε̄2x
νγνγµλ

δε2φI = iε̄2x
νγνγIλ, (A.2)

where ε1,2 are ten dimensional Majorana-Weyl spinors of opposite chirality. The use of ten

dimensional spinors is useful when comparing with string theory computations.

Preservation of one-half of the Poincare supersymmetries locally at each point in the

loop where the operator is defined yields:

Pε1 = (γµẋµ + γI ẏ
I)ε1 = 0. (A.3)

Therefore, there are invariant spinors at each point in the loop if and only if ẋ2 + ẏ2 = 0.

This requires that xµ(s) is a time-like curve and that ẏI = nI(s)
√
−ẋ2, where nI(s) is a

unit vector in R6, satisfying n2(s) = 1. Without loss of generality we can perform a boost

and put the external particle labeling the loop at rest so that the curve along R1,3 is given

by (x0(s), xi(s) = 0) and we can also choose an affine parameter s on the curve such that√
−ẋ2 = 1.

In order for the Wilson loop to be supersymmetric, each point in the loop must preserve

the same spinor. Therefore, we must impose that

dP (s)

ds
= 0, (A.4)

which implies that ẍ0 = 0 and that nI(s) = nI . Therefore, supersymmetry selects a

preferred curve in superspace, the straight line Wilson loop operator, given by

WR(C) = TrR P exp

(

i

∫

dt (A0 + φ)

)

, (A.5)

where φ = nIφI . The operators are now just labelled by a choice of Young tableau R. For

future reference, we write explicitly the 8 unbroken Poincare supersymmetries. They must

satisfy

iε̄1γ0λ + inI ε̄1γIλ = 0. (A.6)

Using relations for conjugation of spinor with the conventions used here

χ̄ζ = ζ̄χ, χ = γIζ → χ̄ = −ζ̄γI (A.7)

we arrive at

γ0γIn
Iε1 = ε1. (A.8)

In a similar manner it is possible to prove that the straight line Wilson loop opera-

tor (A.5) also preserves one-half of the superconformal supersymmetries. The 8 unbroken

superconformal supersymmetries are given by:

γ0γIn
Iε2 = −ε2. (A.9)
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B. Supersymmetry of Fundamental String and of D5k-brane

In this appendix we show that the particular embeddings considered for the fundamental

string and the D5k-brane in section 3 preserve half of the supersymmetries of the back-

ground. We will use conventions similar to those in [37].

For convinience we write again the metric we are interested in (we set L = 1)

ds2
AdS×S = u2ηµνdxµdxν +

du2

u2
+ dθ2 + sin2 θ dΩ2

4, (B.1)

where the metric on S4 is given by:

dΩ4 = dϕ2
1 + sin ϕ2

1dϕ2
2 + sin ϕ2

1 sin ϕ2
2dϕ2

3 + sin ϕ2
1 sinϕ2

2 sin ϕ2
3dϕ2

4. (B.2)

It is useful to introduce tangent space gamma matrices, i.e. γm = em
mΓm (m,m =

0, . . . , 9) where em
m is the inverse vielbein and Γm are the target space matrices:

γµ =
1

u
Γµ (µ = 0, 1, 2, 3), γ4 = uΓu, γ5 = Γθ,

γa+5 =
1

sin θ





a−1∏

j=1

1

sin ϕj



 Γϕa (a = 1, 2, 3, 4) (B.3)

The Killing spinor of AdS5×S5 in the coordinates (3.1) is given by [37]

ε =
[

−u− 1

2 γ4h(θ, ϕa) + u
1

2 h(θ, ϕa)(ηµνxµγν)
]

η2 + u
1

2 h(θ, ϕa)η1 (B.4)

where

h(θ, ϕa) = e
1

2
θγ45e

1

2
ϕ1γ56e

1

2
ϕ2γ67e

1

2
ϕ3γ78e

1

2
ϕ4γ89 (B.5)

η1 and η2 are constant ten dimensional complex spinors with negative and positive ten

dimensional chirality, i.e.

γ11η1 = −η1 γ11η2 = η2. (B.6)

They also satisfy:

P−η1 = η1 P+η2 = η2 (B.7)

where P± = 1
2 (1 ± iγ0123). Thus, each spinor η1,2 has 16 independent real components.

These can be written in terms of ten dimensional Majorana-Weyl spinors ε1 and ε2 of

negative and positive chirality respectively:

η1 = ε1 − iγ0123ε1

η2 = ε2 + iγ0123ε2. (B.8)

By going to the boundary of AdS at u → ∞, we can identify from (B.4) ε1 as the Poincare

supersymmetry parameter while ε2 is the superconformal supersymmetry parameter of

N = 4 SYM.

The supersymmetries preserved by the embedding of a probe, are those that satisfy

Γκε = ε (B.9)
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where Γκ is the κ symmetry transformation matrix in the probe worldvolume theory and

ε is the Killing spinor of the AdS5 × S5 background (B.4). Both Γκ and ε have to be

evaluated at the location of the probe.

Let’s now consider a fundamental string with an AdS2 worldvolume geometry with

embedding:

σ0 = x0 σ1 = u xi = 0 xI = nI . (B.10)

The position of the string on the S5 is parametrized by the five constant angles (θ, ϕ1, ϕ2, ϕ3,

ϕ4) or alternatively by a unit vector nI in R6. The matrix Γκ for a fundamental string

with this embedding reduces to

ΓF1 = γ04K (B.11)

where K acts on a spinor ψ by Kψ = ψ∗. For later convenience we define also the operator

I such that Iψ = −iψ.

The equation (B.9) has to be satisfied at every point on the string. Thus, the term

proportional to u
1

2 gives:

ΓF1h(θ, ϕa)η1 = h(θ, ϕa)η1. (B.12)

The terms proportional to u− 1

2 and u− 1

2 x0 both give:

ΓF1h(θ, ϕa)η2 = −h(θ, ϕa)η2. (B.13)

These can be rewritten as

nIγ0Iη1 = η∗1 nIγ0Iη2 = −η∗2 I = 4, 5, 6, 7, 8, 9 (B.14)

where

nI(θ, ϕ1, ϕ2, ϕ3, ϕ4) =












cos θ

sin θ cos ϕ1

sin θ sin ϕ1 cos ϕ2

sin θ sin ϕ1 sin ϕ2 cos ϕ3

sin θ sin ϕ1 sin ϕ2 sin ϕ3 cos ϕ4

sin θ sin ϕ1 sin ϕ2 sin ϕ3 sin ϕ4












=

(
cos θ

sin θvα

)

, (B.15)

where α = (5, 6, 7, 8, 9) and these vectors satisfy n2 = 1 and v2 = 1. Considering the

parametrization (B.8), the projection (B.14) becomes:

γ0In
Iε1 = ε1 γ0In

Iε2 = −ε2. (B.16)

We note that nI define the position of the string in the S5, so it characterizes the unbroken

rotational symmetry of the system. Therefore, the fundamental string preserves exactly

the same supersymmetries as the Wilson loop operator (A.5).

We now study the D5k-brane embedding considered first by [20, 21]:

σ0 = x0 σ1 = u σa = ϕa xi = 0 θ = θk = constant. (B.17)
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There is an electric flux on the brane given by

F04 = F = cos θk, (B.18)

where k is the amount of fundamental string charge on the D5k-brane.

For this configuration, Γκ is

ΓD5 =
1√

1 − F 2
γ046789KI +

F√
1 − F 2

γ6789I

=
1

sin θk
γ046789KI +

cos θk

sin θk
γ6789I (B.19)

Following similar steps as for the fundamental string, we arrive at

ΓD5h(θk, ϕa)ε1 = h(θk, ϕa)ε1 Γ̄D5h(θk, ϕa)ε2 = h(θk, ϕa)ε2, (B.20)

where

Γ̄D5 = − 1

sin θk
γ046789KI +

cos θk

sin θk
γ6789I. (B.21)

Using that h−1γ04h = nIγ0I and that h−1γ6789h = lαγα56789 we have that the super-

symmetry left unbroken by a D5k-brane is given by:

γ04ε1 = ε1 γ04ε2 = −ε2. (B.22)

Therefore it preserves the same supersymmetries as a fundamental string sitting at the

north pole (i.e. θ = 0), labeled by the vector nI = (1, 0, 0, 0, 0, 0). This vector selects the

unbroken rotational symmetry.

C. Gauge fixing and the unitary matrix measure

In section 5 we have gauge fixed the U(M) symmetry by imposing the diagonal, constant

gauge:

Ã0 = diag(Ω1, . . . ,ΩM ). (C.1)

There is an associated Fadeev-Popov determinant ∆FP corresponding to this gauge choice.

This modifies the measure to

[DÃ0] · ∆FP , (C.2)

where now [DÃ0] involves integration only over the constant mode of the hermitean matrix

Ã0. Under an infinitessimal gauge transformation labelled by α, Ã0 transforms by

δÃ0 = ∂tα + i[Ã0, α], (C.3)

so that:

∆FP = det
(

∂t + i[Ã0, ]
)

. (C.4)

An elementary computation yields

∆FP =
∞∏

l 6=0

2πil

β

∏

I<J

∞∏

k=1

(

1 − β2(ΩI − ΩJ)2

4π2k2

)

, (C.5)
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where we have introduced β as an infrared regulator. Now, using the product representation

of the sin function we have that up to an irrelevant constant:

∆FP =
∏

I<J

4
sin2

(

β
(

ΩI−ΩJ

2

))

(ΩI − ΩJ)2
. (C.6)

This together with the formula for the measure of the Hermitean matrix Ã0

[DÃ0] =
∏

I<J

dΩI(ΩI − ΩJ)2 (C.7)

proves our claim that the gauge fixing effectively replaces the measure over the Hermitean

matrix Ã0 by the measure over the unitary U = eiβÃ0

[DÃ0] · ∆FP = [DU ] =
∏

I<J

dΩI∆(Ω)∆̄(Ω), (C.8)

where

∆(Ω) =
∏

I<J

(eiβΩI − eiβΩJ ). (C.9)
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